THE PROTERRA ZX5 ELECTRIC TRANSIT BUS

2021 MPTA Conference

Ken Becker, Director of Sales, Midwest

AGENDATRANSIT BUS SUMMIT

TOPICS

Introduction & Agenda

Proterra Overview

Where do we start?

Process of engagement

Charging and Infrastructure

Proterra ZX5 Electric Bus

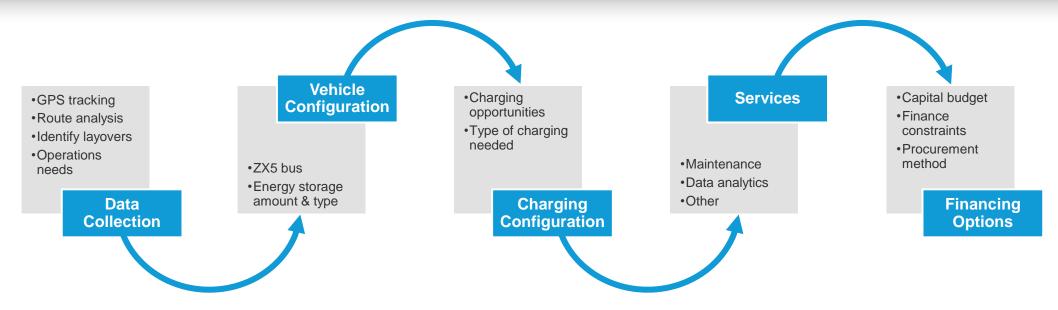
5th generation vehicle

Battery Technology & Safety

Optimizing for Extreme Weather

2021 Low or No Emissions!

PROTERRA OVERVIEW


Proterra is a leader in the design & manufacture of zero-emission electric transit vehicles & EV technology for commercial applications.


- Over a decade of EV deliveries
- Offices & manufacturing in CA & SC
- >1,000 buses sold to 130+ customers across 43 states & provinces
- >16,000,000 service miles
- >54 MW installed charging infrastructure

THE PROTERRA PROCESS OF ENGAGEMENT

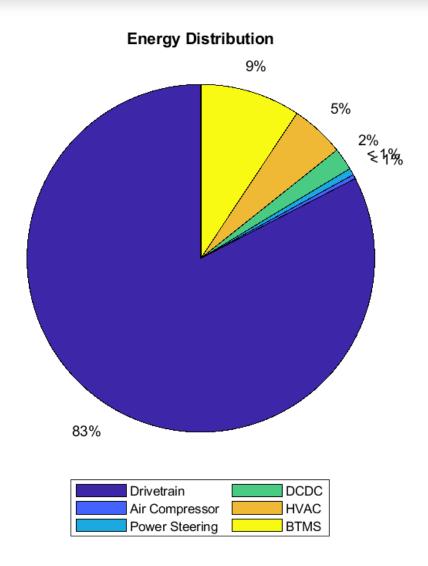
Proterra's approach is to work with you to identify the most efficient, most cost-effective way to electrify your high-priority routes. From riding your routes to structuring a financing package, we take a consultative approach and support you throughout the entire process. Let's get started!

SCENARIO: DEPLOYING ONE ELECTRIC BUS ROUTE ANALYSIS

The Proterra team performs a **detailed analysis** to make an **informed recommendation** on the right vehicle and charger configuration for your use case.

- Analysis shows efficiency different Proterra vehicles will achieve on your routes.
- Conservative approach showing you how vehicles will perform in different weather conditions

Route information	E2	E2MAX	
Route Name	OL.		
Distance	6 miles		
Duration	34 minutes		
Average Speed	10.4 mph		
Manmum Speed	33 mph		
Meximum Grade	1.2%		
Average Day I	Results		
Passenger Count	4	40	
Ambient Temperature	51*7		
Etholency	1.887 kWh/ml	1.952 kWh/m	
MPSe	19.9	19.2	
Total Energy Consumed	11.3 kWh	11.7 kWb	
Estimated range with 1 full charge	166 m/los	271 miles	
System Energy Recoptured by Regen	26%	26%	
1 Lap Final SOC	95.5%	97.5%	
Estimated 1 Lap Recharge Time (On-route charger)	TBD	TBD	
Environmental and Op	perating Impact		
Hot Day	,		
Passenger Count	40		
Ambient Temperature	89%		
Efficiency	2.332 kWh/mi	2.397 kWh/m	
MISSO	16.1	15.7	
Estimated range with 1 full charge	161 miles	220 m/cs	
Cold Day	(*)		
Passenger Count	1	40	
Ambient Temperature	15	15"	
Efficiency	3.346 kWh/ml	3.443 kWh/m	
MPSe	11.2	10.9	
Estimated range with 1 full charge	105 miles	153 miles	


		ZX5+ 450 kWh	ZX5 MAX 675 kWh
Temperate weather	Estimated range	215 miles	331 miles
Hot weather	Estimated range	181 miles	263 miles
Cold weather	Estimated range	Example figures for	illustrative nurposes 223 miles

Route Testing Summary Denver RTD in Feb 2021

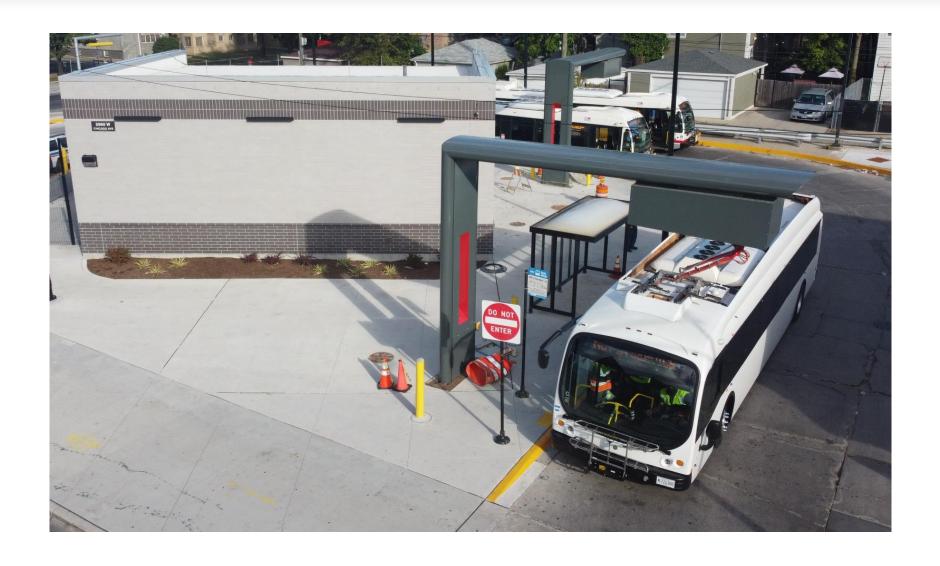
VIN	7JZTH13J9LL000261	
Date	1/25/2021	mm/dd/yyyy
Start time	10:30 AM	hh:mm
End time	11:40 AM	hh:mm
Simulated Load	37	Passengers
Simulated Load	5,550	lbs
Average Ambient Temp	41.8	degF
Average Speed	37.9	mph
Distance	42.3	miles
Net energy used	88.59	kWh
Regen Energy	30.65	kWh
Overall Efficiency	2.096	kWh/mi
Starting SOC	91.5	%
Ending SOC	73.9	%
Extrapolated Max Range*	289	miles

^{*}Assuming 100% use of 90% usable energy for ZX5 Max (675 kWhr nameplate)

INTRODUCING PROTERRA ENERGY FLEET SOLUTIONS TURN-KEY ENERGY DELIVERY FOR ELECTRIC FLEETS

LARGE FLEET SOLUTIONS

SMALL FLEET SOLUTIONS



500 kW 250 kW

OVERHEAD CHARGING EXAMPLE

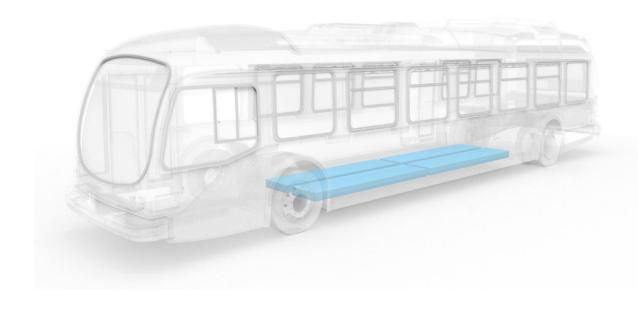


WHAT'S NEW WITH THE PROTERRA ZX5 ELECTRIC BUS

REFINED BODY

- Streamlined roof to accommodate additional battery packs
- Reduced height to cover even more routes
- Flexible charging with additional front port

BUILT FOR SCALE


- Enhanced manufacturability for scaled production
- More commonality across platforms
- More advanced automotive approach

SMOOTHER RIDE

- New shocks and ride height system
- Improved maneuverability, faster kneeling
- Enhanced comfort and ergonomics of driver area

PURPOSE-BUILT DESIGN ENABLES BEST BATTERY PLACEMENT

Proterra buses are purpose-built from the ground up to be electric, enabling the safest placement of batteries

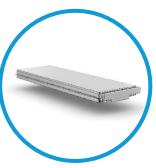
- Underneath and outside of passenger compartment
- Separated by a sealed bulkhead below the floor of the bus
- Avoids placing batteries in the rear of bus, which is a common crash zone
- Battery placement creates a lower center of gravity for greatest vehicle stability

THE PROTERRA ZX5 PLATFORM ADVANCED COMPOSITE BUS BODY

Proterra's use of advanced composite materials makes the Proterra ZX5 not only the most efficient vehicle in its class, but extremely durable and safe as well.

- Advanced carbon-fiber-reinforced composite material
- Super strong, lightweight and impactresistant
- Non-conductive and rust-resistant

HIGHLY DIFFERENTIATED AND FULLY INTEGRATED HEAVY DUTY TECHNOLOGY PLATFORM



Lightweight and durable carbon-fiber-reinforced composite

Heavy Duty Battery Pack

High energy density, ruggedized battery packs purpose built for commercial vehicles

High Efficiency Drivetrain

5x efficiency of diesel Greatest horsepower Fastest acceleration

Universal Charging

Industry standard plug-in and overhead high power Level 3 charging

TO HIGHEST SAFETY STANDARDS

Proterra battery packs have undergone extensive testing to meet the highest safety standards.

Tests performed to account for possible incidents such as:

- Vehicle crash
- Road debris striking the battery pack
- Street manhole cover explosion
- Defective or failed cell within pack
- Overcharge of high voltage system
- Coolant flood internal to battery pack
- Fuel fire external to the vehicle (collision with a combustion engine vehicle)

EXTENSIVE BATTERY TESTINGTO HIGHEST QUALITY STANDARDS

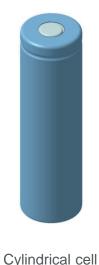
Safety/Abuse Tests	Conditions	Reference	Performed
Mechanical Shock - Crash	10G, 100ms, X and Y axis	ECE R80	Yes
Impact/Underside Abuse	Manhole Cover, Pyramid, Ballistics	Proterra Internal	Yes
Drop	2m drop, concrete floor	SAE J2464 Sec 4.3.2	Yes
Battery Enclosure Integrity - Crush	100kN of force	SAE J2929 Sec 4.6 UL 2580 Sec 38 ECE R100 Annex 8D	Yes
Passive Propagation Resistance	Max Temp, Max SOC	SAE J2464 Sec 4.4.5 UL 2580 Sec 43	Yes
Forced Thermal Runaway	Confidential	Proterra Internal	Yes
Simulated Vehicle Fire	3 min exposure to fire underneath pack	SAE J2929 Sec 4.7 ECE R100 Annex 8E	Yes
Short Circuit	5m Ω hard short, 20m Ω soft short	ECE R100 Annex 8F SAE J2929 Sec 4.8 SAE J2464 Sec 4.5.1 UN 38.3	Yes
Coolant Flood	Forced cooling system leak internal of pack enclosure	Proterra Internal	Yes
UN/DOT Transportation	T.1, T.2, T.3, T.4, T.5	UN 38.3	Yes
Single-point and Multi-point Over Charge	Uncontrolled charge	SAE J2929 Sec 4.9 SAE J2464 Sec 4.5.2 ECE R100 Annex 8G	Yes
Single-point and Multi-point Over Discharge	Uncontrolled discharge	SAE J2929 Sec 4.10 SAE J2464 Sec 4.5.3 ECE R100 Annex 8H	Yes
Single-point and Multi-point Thermal Control Failure	Charge and Discharge without thermal management	SAE J2929 Sec 4.11 SAE J2464 Sec 4.4.3 ECE R100 Annex 8I	Yes
Fault Analysis	Fault analysis of battery system	SAE J2929 Sec 4.12	Yes
Protection Against High Voltage Exposure	IP2xB	SAE J2929 Sec 4.13	Yes

Note: Proterra Internal Reliability Requirements have been developed using specifications for from standards bodies such as SAE, ISO, and IEC and meet or exceed external standards.

15

PROTERRA BATTERY SAFETY & QUALITY ADVANTAGES OF CYLINDRICAL CELLS

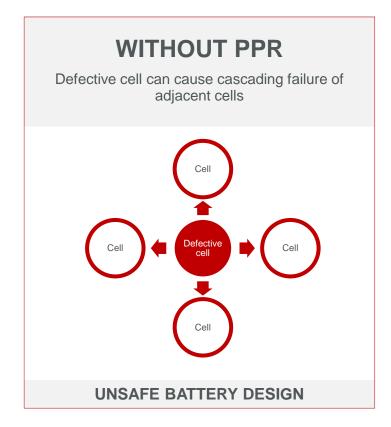
Quality


- Manufactured by Tier 1 cell supplier, LG Chem
- Tier 1 cell suppliers have higher quality requirements, more stringent spec tolerances, larger qualification sample requirements
- Manufacturing in a cylindrical form factor has been optimized and mastered over more than a century

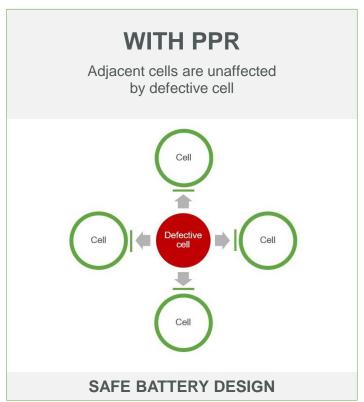
Safety

- With thousands of cylindrical cells in each battery pack, if a single cell stops working it will have a minor impact on the whole pack
- If a single cell has a thermal event, it's easier to contain with a small cell than with larger pouch cells
- Cylindrical cells are used widely in consumer goods and many applications; they are well standardized and produced by every Tier 1 battery manufacturer in the world

Energy Density


- Proterra has the most energy dense cells out of battery-electric bus manufacturers in North America

BATTERY SAFETY BEST PRACTICES PASSIVE PROPAGATION RESISTANCE (PPR)



Alternate battery design

Proterra battery design

PROTERRA BATTERY DESIGN ENABLES PPR

- Small format, cylindrical cells
- Pack is designed such that a defective cell will be isolated and will not cause complications throughout the entire pack

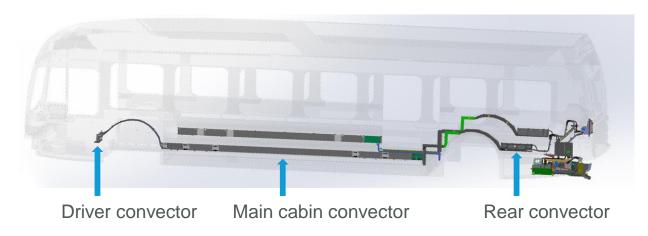
17

BUILT-IN FEATURES FOR COLD WEATHER

All Proterra ZX5 buses come standard with features for optimal operation in cold weather:

- Battery thermal management
 - Coolant heater
- Heated overhead charging
 - Standard for all buses configured for overhead charging
- Heated exterior mirrors
- Heating duct to front door area
- Standard HVAC system & defroster

Proterra bus in Park City, Utah departing overhead charger – January 2019


COLD WEATHER PACKAGE ADDITIONS

Cold weather package:

- Auxiliary heating system
 - Fuel-fired aux heat provides 2x total heating capacity, heating the bus faster and increasing range
- Heated driver's seat
 - Reduce reliance on HVAC & defroster
 - More comfortable operator experience
- Fabric ducting
 - More efficient airflow helps bus heat faster and draws less energy from batteries
- Heated rear doorway
 - Safety feature provides better grip for passengers when floor is icy

Auxiliary heating system

\$180 MILLION AVAILABLE IN LOW-NO GRANTSAPRIL DEADLINE TO APPLY

- \$180 million is available in FTA grants for low or no emission buses and chargers
 - Most funding in the history of the Low-No Program
 - Electric buses, chargers, and associated electric bus infrastructure are eligible

Partner with Proterra

- Applicants may partner with Proterra and satisfy federal competitive procurement requirements
- Proterra can help you apply and meet the April 12th deadline

Transit agencies who partnered with Proterra during previous rounds of Low-No funding received the majority of all Low-No funding awarded for battery-electric buses with a partner, representing more than \$177 million in grant funds.

THANK YOU!

